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Summary: With recent advance in genetic analysis, it has become feasible to classify a pathogen

into genetically distinct variants even though they apparently cause an infected subject similar

symptoms. The availability of such data opens up the interesting problem of studying the spatio-

temporal variation in the diversity of variants of a pathogen. Data on pathogen variants often

suffer the problems of (i) low cell counts, (ii) incomplete classification due to laboratory problems,

for example, contamination, and (iii) unseen variants. Shannon entropy may be employed as a

measure of variant diversity. A Bayesian approach can be used to deal with the problems of low

cell counts and unseen variants. Bayesian analysis of incomplete multinomial data may be carried

out by Markov chain Monte Carlo techniques. However, for pathogen-variant data, it often happens

that there is only one source of missingness, namely, some subjects are known to be infected by

some unidentified pathogen variant. We point out that for incomplete data with disjoint sources

of missingness, Bayesian analysis can be more efficiently done by an iid sampling scheme from the

posterior distribution. We illustrate the method by analyzing a dataset on prevalence of bartonella

infection among individual colonies of prairie dog at the study site in Colorado, from 2003 to 2006.

Key words: Shannon entropy, Bartonella, Bayes factor, Dirichlet distribution, Pathogen diver-

sity, Spatial epidemiology.
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1. Introduction

In the study of the epidemiology of an infectious disease, it is important to monitor the

spatio-temporal variation of the prevalence rate of the disease. With the modern advance in

genetics, it has been found that a disease-causing pathogen often admits multiple variants

(Eames and Keeling, 2006; Kosoy et al., 2004; Read and Taylor, 2001). The effects of the

multiplicity of pathogen strains on the epidemiology of an infectious disease have received

much attention in the literature (Li et al., 2003; Read and Taylor, 2001). Here, we address

several statistical problems encountered in studying the spatio-temporal variation in the

pathogen-variant diversity of an endemic.

The main statistical problem concerns the analysis of incomplete multinomial data.

Suppose that a subject can be classified into one of k categories, with the categories denoted

by the symbols from 1 to k. In our epidemiological application, the first category stands for

no detected bartonella in the blood sample of the subject, whereas the other categories signify

that the subject is infected and record the corresponding type of bartonella strain infecting

the subject; hence, there are altogether k− 1 strains of the pathogen. A common laboratory

problem is that the blood sample of a subject may not be usable due to contamination

or other problems, so that while the subject is known to be infected, the exact nature

of the infecting pathogen strain is unknown. Often, this constitutes the only source of

incompleteness in the multinomial data. Here, we address the problem of analyzing such

kind of incomplete multinomial data. (In fact, we shall consider slightly more general kind

of incomplete multinomial data with disjoint sources of missingness.)

Besides the incomplete-data problem, epidemiological data often have low or zero cell

counts, rendering large-sample asymptotics unreliable. The Bayesian approach with non-

informative prior is, however, more appropriate for such cases. Yet another problem is

that of unseen variants, not observed in the sample perhaps due to their low probabilities
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and/or inadequate sampling efforts. Ignoring the possibility of unseen variants may result in

bias when estimating some functional, e.g. Shannon entropy (Shannon, 1948, and see also

section 3) of the variant distribution. The latter problem may be tackled by parametric or

nonparametric methods from a frequentist perspective, see Bunge and Fitzpatrick (1993),

Chao and Shen (2003). Here, we propose a Bayesian approach to deal with the problems of

low cell counts and unknown number of categories. In practice, some upper bound on the

total number of categories is known, in which case a non-informative prior distribution may

then be employed.

The posterior distribution with incomplete multinomial data is often intractable, and

Markov chain Monte Carlo techniques have been proposed to draw inference based on

dependent sample from the posterior distribution, see Gelman et al. (2003). A main purpose

of this note is to point out that for incomplete multinomial data with disjoint sources of

missingness and conditional on the number of categories, the posterior distribution has

a simple representation that admits exact calculation of its lower moments, and that iid

samples can be easily drawn from the posterior distribution. Furthermore, the posterior

distribution of the number of categories has a closed-form solution. These results make it

easy to study the posterior distribution of some nonlinear functional of the multinomial

probability distribution.

Shannon entropy is widely used to quantify species richness and diversity in ecology

(Holgate, 1981; Pielou, 1966; Lande, 1996; Jost, 2006). In our epidemiological application,

we employ Shannon entropy to measure the diversity of bartonella strains among individual

colonies of prairie dogs at the field site in Colorado, from 2003 to 2006. The bartonella

monitoring dataset is incomplete as some data from 2004 are partially classified in that for

some infected prairie dogs, the bartonella strains are unknown.

The outline of this note is as follows. In section 2, we state some useful results on the
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posterior distribution with incomplete multinomial data. All proofs are deferred to the

appendices. In section 3, we illustrate the result with the aforementioned epidemiological

application. We briefly conclude in section 4.

2. Bayesian Analysis of Incomplete Multinomial Data

To fix ideas, we start with an example taken from the bartonella monitoring data. In 2004,

among the prairie dogs trapped at site 1, 14 of them had no detected bartonella, 5 were

infected with bartonella variant A, 1 with variant B, 1 with variant C, and 1 missing

observation at site 1. For the missing observation, it is known to be infected but by unknown

bartonella variant. However, other bartonella variants were present in data at other sites.

For example, in site 14, there were 11 undetected, 1 bartonella variant E, and 4 missing

observations. This suggests there may be some unseen variants present at site 1, leading to

the following scenarios:

(1) If no possibility of other variants besides A, B, and C is considered to be present in site

1, the observations there can be represented as a vector (14,5,1,1,1), with the first four

counts being those of the 4 categories: undetected, variants A, B, and C, and the last

count that of the missing category. Also the lone missing observation should be one of

variants A, B, and C.

(2) If the possibility of variant E in site 1 is entertained, the data may be written as

(14,5,1,1,0,1), with the counts augmented by a zero, the cell count of variant E. In

this case, we have 5 categories: undetected, variants A, B, C, and E. Also the missing

observation should be one of variants A, B, C, and E.

(3) In the case of c unseen variants, the observations have to be augmented with c zeros.

Thus, the choice of the number of unseen variants plays an important role in determining

the format of data. Below, q stands for the number of observed categories, i.e., the number
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of categories with positive counts, and k equals the true number of (observed plus unseen)

categories. In the above example, q = k = 4 in case (1), and q = 4, k = 5 in case (2).

We shall derive the posterior distribution by first deriving the conditional posterior distri-

bution given the total number of categories k. Then, we provide the formula for the posterior

probability of k. Let {W1, . . . ,Wn} be a random sample from a probability distribution taking

values in the finite set A = {1, 2, . . . , k} with Prob(W = j) = θj. We first consider the case of

known k. Suppose that some of the W s are incompletely observed and they are only known to

belong to some non-singleton proper subsets of A, denoted by Aj, j = 1, . . . ,m; the sampling

mechanism of missing at random will be assumed. Let Xi be the non-zero counts of W s

that equal i, for i = 1, . . . , q where q 6 k and XAj
be the count of incompletely observed

W s that belong to Aj. The observed data consist of Z = (X1, . . . , Xq, XA1 , . . . , XAm)T with

the augmented counts Xq+1 = · · · = Xk = 0 under the assumption of a total number

of k categories. In the epidemiological application discussed in the next section, there is

only one kind of incomplete observations and A1 = {1}c = {2, 3, . . . , k}. Let the prior

distribution of θ = (θ1, . . . , θk)
T be the Dirichlet distribution with hyperparameter vector

α = (α1, α2, . . . , αk)
T , that is, the prior pdf equals

π(θ|α) ∝
k∏

i=1

θi
αi−1.

Below, the notation π(·|·) denotes the conditional pdf of the the first expression given the

second expression. Let X = (X1, . . . , Xk, XA1 , . . . , XAm)T . The posterior distribution of θ

given X = x equals

π(θ|x) ∝
k∏

i=1

θi
αi+xi−1

m∏
i=1

( ∑
j∈Ai

θj

)xAi . (1)

In general, the preceding posterior distribution is intractable and inference may have to

be drawn by drawing dependent samples from the posterior distribution, via Markov chain

Monte Carlo techniques, see Gelman et al. (2003). Interestingly, for the case that the Aj’s are

disjoint subsets, the posterior distribution has a tractable representation that admits closed-
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form analysis, for example, moment calculations. To describe the representation, let A0 =

A−∪m
j=1Aj. We show below that the posterior distribution is tractable by re-parameterizing

the model using the parameters defined by the group probabilities U = (U0, U1, . . . , Um)T ,

where Uj =
∑

i∈Aj
θi, j = 0, 1, . . . ,m, and the conditional probabilities of individual cells

within each group V Aj
= (θi/Uj, i ∈ Aj)

T , 0 6 j 6 m. Clearly, the sum of the components

in U and those of each V Aj
are constrained to be 1. Furthermore, it is readily checked that

θ and (U , V Aj
, j = 0, . . . ,m) are equivalent parameterization as they bear a one-to-one

relationship.

It follows from (1) that

π(θ|x) ∝
k∏

i=1

θi
αi+xi−1

m∏
i=1

( ∑
j∈Ai

θj

)xAi

∝
∏

i∈A0

( θi∑
j∈A0

θj

)αi+xi−1 ∏
i∈A1

( θi∑
j∈A1

θj

)αi+xi−1

× · · · ×
∏

i∈Am

( θi∑
j∈Am

θj

)αi+xi−1

×
( ∑

i∈A0

θi

)∑
j∈A0

(αj+xj−1)( ∑
i∈A1

θi

)xA1
+
∑

j∈A1
(αj+xj−1)

× · · · ×
( ∑

i∈Am

θi

)xAm+
∑

j∈Am
(αj+xj−1)

.

Hence, U and V Aj
, j = 0, . . . ,m are jointly independent. Let Ap = {p1, . . . , pnp}, p =

0, . . . ,m. Then, V Ap = (
θp1∑

j∈Ap
θj

, . . . ,
θpnp∑
j∈Ap

θj
) follows the Dirichlet distribution

with parameter vector (αp1 + xp1 , . . . , αpnp
+ xpnp

), for p = 0, . . . ,m. Also, U =

(
∑

i∈A0
θi,

∑
i∈A1

θi, . . . ,
∑

i∈Am
θi) has the Dirichlet distribution with parameter vector

(
∑

j∈A0
(αj+xj), xA1+

∑
j∈A1

(αj+xj), . . . , xAm +
∑

j∈Am
(αj+xj)). The above representation of

the posterior distribution furnishes a simple way to draw random samples from the posterior

distribution which admits analytical formulas for the lower moments. See Appendix A for

proofs of the preceding claims.

We now address the problem of unknown k. We assume that an upper bound, say M ,

of k is known, and adopt a flat prior distribution for k over the range from 1 to M . It is
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shown in Appendix B that for k > q, the posterior probability of k given the observations

Z = (X1, . . . , Xq, XA1 , . . . , XAm)T = z equals (now θ is written as θk to emphasize its

dependence on k)

π(k|z) ∝ π(z|k)π(k) ∝
∫
A

π(x|θk, k)π(θk|k)π(k)dθk

∝ 1

M

(
∑q

i=1 xi +
∑m

i=1 xAi
)!

x1! · · ·xq!xA1 ! · · ·xAm !

Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

m∏
i=0

{ ∏
j∈Ai

Γ(αj + xj)

Γ(
∑

j∈Ai
(αj + xj))

}
×

∏m
i=0 Γ(

∑
j∈Ai

(αj + xj) + xAi
)

Γ(
∑m

i=0{
∑

j∈Ai
(αj + xj) + xAi

})
, (2)

where xA0 = 0 and Γ(·) denotes the Gamma function. If k < q, π(k|z) is clearly zero. Since∑M
k=1 π(k|z) =

∑M
k=q π(k|z) = 1, we can obtain the closed form of the posterior probability

of k by normalizing the left side of (2) to sum up to 1. Note that for complete data, i.e.,

xA1 = · · · = xAm = 0, the posterior probability can be simplified as follows:

π(k|x1, . . . , xq) ∝
1

M

(
∑q

i=1 xi)!(
∑k

i=1 αi − 1)!

(
∑q

i=1 xi +
∑k

i=1 αi − 1)!

q∏
i=1

{(xi + αi − 1)!

xi!(αi − 1)!

}
. (3)

3. An Epidemiological Example: Spatio-temporal Variation of the Diversity of

Bartonella Variants in a Prairie-Dog System

Data on temporal dynamics and spatial distribution of Bartonella in black-tailed prairie dogs

(Cynomys ludovicianus) based on a longitudinal study conducted in 20 black-tailed prairie

dog (BTPD) colonies in Boulder County, Colorado from 2003 to 2005, but only 9 sites were

examined in 2006. Prevalence of bartonella in prairie dogs was determined by culturing blood

samples in specific medium and strains infecting the trapped prairie dogs were identified by

sequencing of the target gene of bartonella. Except in 2004, the disease status and the type

of bartonella strain affecting the trapped prairie dogs were determined. However, results on

the bartonella variant for some trapped prairie dogs in 2004 were incomplete because of

technical problems. Two interesting epidemiological questions are (i) whether there is any
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spatial variation in the diversity of bartonella variants within each year, and (ii) whether the

diversity of the bartonella variants change over time.

To study these issues, we first lay out the framework for analyzing complete data from a

single year, and assuming that there are n sites. In particular, we can drop the year index. Let

ks be the true number of categories at site s. Let θs = (θs,1, . . . , θs,ks) be the true proportions

of the ks categories at site s, s = 1, . . . , n. Recall that the first category stands for no detected

bartonella in the blood sample of a random prairie dog, and category 2 stands for a random

prairie dog being infected by bartonella variant 1, etc. Let xs = (xs,1, . . . , xs,ks) be the

observed counts of the ks categories at sampling site s. Assume the maximum number of

categories is M for all sites. Assume a flat prior for ks that are independent across sites. Given

{ks, s = 1, . . . , n}, we adopt the non-informative prior, that is, the prior distribution of θs,

s = 1, . . . , n is independent across site and non-informative at each site. We assume that the

counts are conditionally independent multinomially distributed given the true proportions

over all sites. Consequently the posterior distribution of (ks, θ
T
s ) are independent across sites.

Further, given {ks, s = 1, . . . , n}, the marginal posterior distribution of θs equals

θs|xs,1, . . . , xs,ks ∼ Dirichlet(1 + xs,1, . . . , 1 + xs,ks),

∝
ks∏
i=1

θ
xs,i

s,i ,
ks∑
i=1

θs,i = 1, s = 1, . . . , n,

where the sign ∼ is read as “distributed as.” Note that a realization of θs from the Dirichlet

distribution with parameter vector (αs,1, . . . , αs,ks) can be obtained by the following well-

known sampling scheme:

(1) Yi ∼ Gamma(shape = αs,i, scale = 1), i = 1, . . . , ks,

(2) V =
∑ks

i=1 Yi ∼ Gamma(shape =
∑ks

i=1 αs,i, scale = 1),

(3) (Y1

V
, . . . ,

Yks

V
) ∼ Dirichlet(αs,i, . . . , αs,ks),

where the Yi’s are independent.

It remains to derive the posterior probability of ks, the number of categories at site s.



8

The data, which is not shown in this paper, indicates that there may be some unobserved

categories, that is, unseen variants at each site. Let qs be the number of categories with

positive counts at site s. It follows form (3) that the posterior probability of the number of

categories, ks, is given by the formula

π(ks|xs,1, . . . , xs,qs) =

(ks−1)!

(
∑qs

i=1
xs,i+ks−1)!∑M

j=qs

[
(j−1)!

(
∑qs

i=1
xs,i+j−1)!

]
for qs 6 ks 6 M , and zero otherwise.

At each site, the diversity of the bartonella variants can be quantified by Shannon entropy

which, at site s, is given by Ds = −∑ks
i=1 θs,i log2 θs,i. A larger entropy means more diversity.

The posterior distribution of Ds can be easily studied by drawing a random sample from the

joint posterior distribution of θs and ks and compute Shannon entropy for each realization

of the probabilities. For a specific algorithm to obtain samples of Shannon entropy for site

s,

(1) Draw ks according to the posterior probabilities π(ks|xs,1, . . . , xs,qs).

(2) Draw Yi ∼ Gamma(shape = xs,i + 1, scale = 1), i = 1, . . . , ks.

(3) Draw V =
∑ks

i=1 Yi ∼ Gamma(shape =
∑ks

i=1 xs,i + ks, scale = 1).

(4) Obtain θs = (Y1

V
, . . . ,

Yks

V
) ∼ Dirichlet(xs,1 + 1, . . . , xs,ks + 1).

(5) Calculate Ds.

(6) Repeat (1)–(5) T times.

The posterior median Shannon entropy at each site can be used as a summary statistic of the

bartonella-variant diversity at that site. The spatial variation of the within-year bartonella-

variant diversity is displayed in Figure 1.

[Figure 1 about here.]

The sub-figure for 2004 in Figure 1, however, requires some modification of the method

due to the presence of missing data in that year. The strain of some of the bartonella-positive



A Note on Bayesian Inference with Incomplete Multinomial Data 9

prairie dogs trapped in 2004 were unknown. Consequently, a new category is introduced to

account for such subjects. Specifically, let there be xs,A1 prairie dogs at site s that were found

to be bartonella-positive, but of unknown strain. Here A1 = {1}c, the complement of the

undetected category. It follows from (2) that

π(ks|xs,1, . . . , xs,qs , xs,A1) ∝
1

M

(ks − 1)!(
∑qs

i=1 xi + xs,A1)!

(
∑qs

i=1 xs,i + xs,A1 + ks − 1)!

(
∑qs

i=2 xs,i + xs,A1 + ks − 2)!

xs,A1 !(
∑qs

i=2 xs,i + ks − 2)!
,

for qs 6 ks 6 M and zero otherwise. Now, we can apply the results from section 2 to derive

the posterior distribution given ks. The posterior cell probabilities at a site s is given as

follows:

θs,1 ∼ Beta(xs,1 + 1,
ks∑

j=1

xs,j + xs,A1 + ks − (xs,1 + 1)),

( θs,2

1− θs,1

, . . . ,
θs,ks

1− θs,1

)
∼ Dirichlet(xs,2 + 1, . . . , xs,k + 1).

Hence, θs,1 and
(

θs,2

1−θs,1
, . . . ,

θs,ks

1−θs,1

)
are independent Dirichlet random variables. Therefore, a

random sample of size T from the posterior distribution of θs, s = 1, . . . , n can be generated

by the following sampling scheme:

(1) Draw ks according to the posterior probabilities π(ks|xs,1, . . . , xs,qs , xs,A1).

(2) Draw θs,1 ∼ Beta(xs,1 + 1,
∑ks

j=1 xs,j + xs,A1 + ks − (xs,1 + 1)).

(3) Draw ( θs,2

1−θs,1
, . . . ,

θs,ks

1−θs,1
) = (ps,2, . . . , ps,ks) ∼ Dirichlet(xs,2 + 1, . . . , xs,ks + 1).

(4) Obtain θs,i = ps,i(1− θs,1), i = 2, . . . , ks.

(5) Repeat (1)–(4) T times.

As before, the posterior distribution of the Shannon entropy can be easily obtained by

computing Shannon entropy for each posterior probability vector.

The total number of variants observed from 2003 to 2006 is 9. Thus, we have a total of 10

observed categories including the category of no detected bartonella, which means M > 10.

We tried M = 10, 11, 12, 13, and 14, and found the results to be robust against the choice

of M . Figure 1 plots a circle centered at each site with its area proportional to the median
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posterior Shannon entropy of the bartonella strains at that site, with simulation size equal

to T = 3000 and the maximum number of categories equal to M = 13.

Figure 1 suggests that there was spatial variation in the diversity of bartonella strains in

each year over the study period. The spatial homogeneity hypothesis can be assessed by

computing the Bayes factor (Appendix C) for the null hypothesis H0 : ps,i ≡ pi,∀s versus

the alternative hypothesis H1 that H0 is invalid. The Bayes factor is essentially the ratio of

the posterior probabilities of the two hypotheses assuming equal prior probabilities for the

two hypotheses. All Bayes factors are found to be less than 0.0001 for M = 10, 11, 12, 13,

and 14. Thus, there is strong statistical evidence for spatial heterogeneity in the distribution

of the bartonella strains.

[Figure 2 about here.]

[Table 1 about here.]

[Table 2 about here.]

To assess the extent of temporal variation, we compute the yearly average Shannon entropy

by computing the simple mean of the entropy across sites, based on the posterior distribution

under the general hypothesis that the bartonella distribution may vary across site and year.

Figure 2 shows the posterior distribution of the annual Shannon entropy of the bartonella

variants, over the study period. The posterior distributions are fairly symmetric for 2004

and 2005 but somewhat skewed to the right for 2003 and 2006. Table 1 shows the posterior

means of Shannon entropy. For M = 10, 11, 12, 13, and 14, the results are almost identical.

Table 2 reports the posterior 95% intervals of the annual Shannon entropy and the posterior

mean entropies for M = 13. Based on Table 2, there is strong statistical evidence that the

entropy increased gradually from 2003 to 2004, then jumped sharply in 2005 and decreased

slightly in 2006.
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4. Conclusion

We have pointed out that, for a particular kind of incomplete multinomial data that

commonly occur in epidemiology, the posterior distribution can be studied based on drawing

iid samples rather than the less efficient method of drawing dependent samples via Markov

chain Monte Carlo. Using this approach, we studied the spatio-temporal variation in the

diversity of bartonella strains among prairie dogs in a monitoring system in Colorado. We

employed Shannon entropy in studying the bartonella-strain diversity, by analyzing the data

from a Bayesian point of view with a uniform prior. We found that the diversity of bartonella

variants increased from 2003 to 2005, but decreased in 2006. However, the results suggest

that the bartonella-variant diversity in 2006 was still higher than that of 2003 and 2004. A

biologically interesting question is to further probe the factors affecting the found temporal

variation in the Bartonella-strain diversity. On the other hand, an interesting statistical

problem concerns the development of more efficient Markov chain sampling from general,

incomplete multinomial data based on the results reported in Section 2.
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Appendix

Appendix A: Proof of Distribution Results Claimed in Section 2

Let’s consider the unnormalized posterior distribution of θ:

π(θ|x) ∝
∏

i∈A0

( θi∑
j∈A0

θj

)αi+xi−1 ∏
i∈A1

( θi∑
j∈A1

θj

)αi+xi−1
× · · · ×

∏
i∈Am

( θi∑
j∈Am

θj

)αi+xi−1

×
( ∑

i∈A0

θi

)∑
j∈A0

(αj+xj−1)( ∑
j∈A1

θj

)xA1
+
∑

j∈A1
(αj+xj−1)

× · · · ×
( ∑

j∈Am

θj

)xAm+
∑

j∈Am
(αj+xj−1)

.

Without loss of generality, assume A0 = {1, 2, . . . , a0}, A1 = {a0+1, a0+2 . . . , a1}, . . . , Am =

{am−1 + 1, am−1 + 2 . . . , am} where am = k. Consider the transformation from (θ1, . . . , θk−1)

to (V1, . . . , Va0−1, U0, . . . , Vam−2+1, . . . , Vam−1−1, Um−1, Vam−1+1, . . . , Vam−1) defined by the fol-

lowing formula:

V1 = θ1∑
j∈A0

θj
, . . . , Va0−1 =

θa0−1∑
j∈A0

θj
, U0 =

∑
j∈A0

θj,

Va0+1 =
θa0+1∑
j∈A1

θj
, . . . , Va1−1 =

θa1−1∑
j∈A1

θj
, U1 =

∑
j∈A1

θj,

...

Vam−2+1 =
θam−2+1∑
j∈Am−1

θj
, . . . , Vam−1−1 =

θam−1−1∑
j∈Am−1

θj
, Um−1 =

∑
j∈Am−1

θj,

Vam−1+1 =
θam−1+1∑

j∈Am
θj

, . . . , Vam−1 = θam−1∑
j∈Am

θj
.

Letting a−1 = 0, Vai
=

θai∑
j∈Ai

θj
, i = 0, 1, . . . ,m and Um =

∑
j∈Am

θj, we have the following

constraints:

Vai
= 1−

ai−1∑
r=ai−1+1

Vr, i = 0, . . . ,m,

Um = 1−
m−1∑
r=0

Ur.

Then, the inverse transformation from (V1, . . . , Va0−1, U0, . . . , Vam−2+1, . . . , Vam−1−1, Um−1,

Vam−1+1, . . . , Vam−1) to (θ1, . . . , θk−1) is given by

θ1 = V1U0, . . . , θa0−1 = Va0−1U0, θa0 = (1−∑a0−1
r=1 Vr)U0,

θa0+1 = Va0+1U1, . . . , θa1−1 = Va1−1U1, θa1 = (1−∑a1−1
r=a0+1 Vr)U1,
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...

θam−1+1 = Vam−1+1(1−
∑m−1

r=0 Ur), . . . , θam−1 = Vam−1(1−
∑m−1

r=0 Ur).

Then, the Jacobian matrix equals

J =
∂(θ1, . . . , θk−1)

∂(V1, . . . , Va0−1, U0, . . . , Vam−2+1, . . . , Vam−1−1, Um−1, Vam−1+1, . . . , Vam−1)

=



J0

J1

. . .

Jm−1

B0 B1 · · · Bm−1 Jm


,

where the blank entries (here and below) are zeros and for i = 0, . . . ,m− 1,

J i =



Ui Vai−1+1

Ui Vai−1+2

. . .
...

Ui Vai−1

−Ui −Ui · · · −Ui 1−∑ai−1
r=ai−1+1 Vr


, Bi =



0 · · · 0 −Vam−1+1

0 · · · 0 −Vam−1+2

0 · · · 0
...

0 · · · 0 −Vam−1


,

and

Jm =


1−∑m−1

r=0 Ur

. . .

1−∑m−1
r=0 Ur

 .

Here, J i is a (ai − ai−1) × (ai − ai−1) matrix for i = 0, . . . ,m − 1, Bi is a (am − am−1 −

1) × (ai − ai−1) matrix, and Jm is a (am − am−1 − 1) × (am − am−1 − 1) matrix. Now, for

i = 0, . . . ,m− 1, it can be readily checked that the determinant

|Ji| = U
ai−ai−1−1
i {(1−

ai−1∑
r=ai−1+1

Vr) + Vai−1}+ U
ai−ai−1−1
i (

ai−2∑
r=ai−1+1

Vr)

= U
ai−ai−1−1
i .
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Thus, |J | = ∏m
i=0 |Ji| =

∏m
i=0 U

ai−ai−1−1
i where Um = 1−∑m−1

r=0 Ur. Letting xA0 = 0, U be the

vector of Ui’s and V the vector of Vj’s, we have

π(U , V |x) ∝
∏

i∈A0

V αi+xi−1
i

∏
i∈A1

V αi+xi−1
i · · ·

∏
i∈Am

V αi+xi−1
i

×
m∏

i=0

U
xAi

+
∑

j∈Ai
(αj+xj−1)

i

m∏
i=0

U
ai−ai−1−1
i

∝
∏

i∈A0

V αi+xi−1
i

∏
i∈A1

V αi+xi−1
i · · ·

∏
i∈Am

V αi+xi−1
i

×
m∏

i=0

U
ai−ai−1−1+xAi

+
∑

j∈Ai
(αj+xj−1)

i

∝
∏

i∈A0

V αi+xi−1
i

∏
i∈A1

V αi+xi−1
i · · ·

∏
i∈Am

V αi+xi−1
i

×
m∏

i=0

U
xAi

+
∑

j∈Ai
(αj+xj)−1

i .

This proves that the random vectors (V1, . . . , Va0), . . . , (Vam−1+1, . . . , Vam), and (U0, . . . , Um)

are jointly independent. Upon noting that ai−ai−1 equals the cardinality of Ai, i = 1, . . . ,m

and that V Aj
= (V1+aj−1

, . . . , Vaj
)T for all j, this completes the proof of the distributional

results claimed in Section 2.

We now derive the first and second posterior moments of θ. Let i, j be such that they

belong to some Ap. Based on the distributional results in Section 2, we obtain

E
( θi∑

r∈Ap
θr

|x
)

=
αi + xi∑

r∈Ap
(αr + xr)

,

Var
( θi∑

r∈Ap
θr

|x
)

=
(αi + xi)(

∑
r∈Ap

(αr + xr)− αi + xi)

(
∑

r∈Ap
(αr + xr))2(

∑
r∈Ap

(αr + xr) + 1)
,

Cov
( θi∑

r∈Ap
θr

,
θj∑

r∈Ap
θr

|x
)

= − (αi + xi)(αj + xj)

(
∑

r∈Ap
(αr + xr))2(

∑
r∈Ap

(αr + xr) + 1)
.

Let

βi = xAi
+

∑
r∈Ai

(αr + xr), i = 0, . . . ,m,

β00 =
m∑

`=0

{xA`
+

∑
r∈A`

(αr + xr)},
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where xA0 = 0, for i = 1, . . . ,m. Then, we have

E
( ∑

r∈Ai

θr|x
)

=
βi

β00

,

Var
( ∑

r∈Ai

θr|x
)

=
βi(β00 − βi)

β2
00(β00 + 1)

,

Cov
( ∑

r∈Ai

θr,
∑

r∈Aj

θr|x
)

= − βiβj

β2
00(β00 + 1)

.

Consequently, the posterior mean

E(θi|x) = E
( θi∑

r∈Ap
θr

|x
)
E

( ∑
r∈Ap

θr|x
)
,

whereas the posterior covariance of θi and θj is given by

Cov(θi, θj|x) =
[
Cov

( θi∑
r∈Ap

θr

,
θj∑

r∈Ap
θr

|x
)

+ E
( θi∑

r∈Ap
θr

|x
)
E

( θj∑
r∈Ap

θr

|x
)]

×
[
Var

( ∑
r∈Ap

θr|x
)

+
{
E

( ∑
r∈Ap

θr|x
)}2]

−E
( θi∑

r∈Ap
θr

|x
)
E

( θj∑
r∈Ap

θr

|x
){

E
( ∑

r∈Ap

θr|x
)}2

,

Similarly, it can be shown that for i ∈ Ap, j ∈ Aq, and p 6= q, the posterior covariance of θi

and θj equals

Cov(θi, θj|x) = E
( θi∑

r∈Ap
θr

|x
)
E

( θj∑
r∈Aq

θr

|x
)
Cov

( ∑
r∈Ap

θr,
∑

r∈Aq

θr|x
)
.

Appendix B: Posterior Distribution of k

Case I: Complete Data

Let z = (x1, x2, . . . , xq) be the observed data where xi > 0, i = 1, . . . , q. And let x =

(x1, x2, . . . , xq, 0, . . . , 0) = (x1, x2, . . . , xk) with k > q. Assume the maximum number of

categories is M . Let k be the true number of categories. We assume a flat prior for k. Let

θk = (θ1, . . . , θk). Then, for k > q,

π(k|z) ∝ π(z|k)π(k) ∝
∫
A

π(x|θk, k)π(θk|k)π(k)dθk,



A Note on Bayesian Inference with Incomplete Multinomial Data 17

where A is the support of θk. The prior probability density of θk is set to be the Dirichlet

distribution with (α1, . . . , αk). Then, we have

∫
A

π(x|θk, k)π(θk|k)π(k)dθk =
∫
A

{(
∑q

i=1 xi +
∑k

i=q+1 0)!

x1! · · ·xq!0! · · · 0!

q∏
i=1

θi
xi

k∏
i=q+1

θi
0

× Γ(
∑k

i=1 αi)

Γ(α1) · · ·Γ(αk)

q∏
i=1

θi
αi−1

k∏
i=q+1

θi
αi−1 1

M

}
dθk

=
1

M

(
∑q

i=1 xi)!

x1! · · ·xq!

Γ(
∑k

i=1 αi)

Γ(α1) · · ·Γ(αk)

×Γ(x1 + α1) · · ·Γ(xq + αq)Γ(αq+1) · · ·Γ(αk)

Γ(
∑q

i=1 xi +
∑k

i=1 αi)

=
1

M

(
∑q

i=1 xi)!(
∑k

i=1 αi − 1)!

(
∑q

i=1 xi +
∑k

i=1 αi − 1)!

q∏
i=1

{(xi + αi − 1)!

xi!(αi − 1)!

}
.

If k < q, then π(k|z) = 0.

For the bartonella application, α1 = · · · = αk = 1. Thus, for k > q we obtain

π(k|z) ∝ 1

M

(
∑q

i=1 xi)!(k − 1)!

(
∑q

i=1 xi + k − 1)!

q∏
i=1

{xi!

xi!

}
∝ 1

M

(
∑q

i=1 xi)!(k − 1)!

(
∑q

i=1 xi + k − 1)!
.

Case 2: Incomplete Data

Let z = (x1, x2, . . . , xq, xA1 , . . . , xAm) be the observed data where xi > 0 and xAj
> 0 for

i = 1, . . . , q, j = 1, . . . ,m. The symbols M and k are as defined in Case 1. A flat prior for

k is assumed. Let x = (x1, x2, . . . , xq, 0, . . . , 0, xA1 , . . . , xAm) = (x1, x2, . . . , xk, xA1 , . . . , xAm)

with k > q.

π(k|z) ∝ π(x|k)π(k) ∝
∫
A

π(x|θk, k)π(θk|k)π(k)dθk.

Let xA0 be 0. Using the notations and results of Appendix A, we have

∫
A

π(x|θk, k)π(θk|k)π(k)dθk =
∫
A

{ (
∑k

i=1 xi +
∑m

i=1 xAi
)!

x1! · · ·xk!xA1 ! · · ·xAm !

k∏
i=1

θxi
i

m∏
i=1

( ∑
j∈Ai

θj

)xAi

×Γ(α1 + · · ·+ αk)

Γ(α1) · · ·Γ(αk)
θα1−1
1 · · · θαk−1

k

1

M

}
dθk

=
1

M

(
∑q

i=1 xi +
∑m

i=1 xAi
)!

x1! · · ·xq!xA1 ! · · ·xAm !

Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

×
∫
A

{ ∏
i∈A0

( θi∑
j∈A0

θj

)αi+xi−1
· · ·

∏
i∈Am

( θi∑
j∈Am

θj

)αi+xi−1
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×
m∏

i=0

( ∑
j∈Ai

θj

)xAi
+
∑

j∈Ai
(αj+xj−1)}

dθk

=
1

M

(
∑q

i=1 xi +
∑m

i=1 xAi
)!

x1! · · ·xq!xA1 ! · · ·xAm !

Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

×
m∏

i=0

{ ∏
j∈Ai

Γ(αj + xj)

Γ(
∑

j∈Ai
(αj + xj))

} ∏m
i=0 Γ(

∑
j∈Ai

(αj + xj) + xAi
)

Γ(
∑m

i=0{
∑

j∈Ai
(αj + xj) + xAi

})
.

If k < q, then π(k|z) = 0.

In the bartonella application, A0 = {1}, A1 = Ac
0, and α1 = · · · = αk = 1. Thus, for k > q,

we obtain

π(k|x1, . . . , xq, xA1) ∝ 1

M

(k − 1)!(
∑q

i=1 xi + xA1)!

(
∑q

i=1 xi + xA1 + k − 1)!

(
∑q

i=2 xi + xA1 + k − 2)!

xA1 !(
∑q

i=2 xi + k − 2)!
.

Appendix C: Bayes Factors

Case 1: Complete Data

Assume we have n sites, and ks denotes the true number of categories for site s. Let

Xs = (Xs,1, Xs,2, . . . , Xs,qs , 0, . . . , 0) = (Xs,1, Xs,2, . . . , Xs,ks) be a vector of counts at site

s where Xs,i > 0 for i = 1, . . . , qs. And let θs = (θs,1, θs,2, . . . , θs,ks) be the corresponding

cell probabilities, s = 1, . . . , n. Let q be the number of observed and distinct categories in

all sites. Note that q > qs for s = 1, . . . , n. Assume the maximum number of observed and

unobserved categories is M . We want to test the following hypothesis:

H0 : θ1 = θ2 = · · · = θn = θ = (θ1, . . . , θk), versus

H1 : H0 is not true.

Let the prior probabilities of the two hypotheses be π(H0) = 1
2

and π(H1) = 1
2
. The Bayes

factor equals

B =
π(H0|X1, . . . ,Xn)

π(H1|X1, . . . ,Xn)
=

π(X1, . . . ,Xn|H0)π(H0)/π(X1, . . . ,Xn)

π(X1, . . . ,Xn|H1)π(H1)/π(X1, . . . ,Xn)

=
π(X1, . . . ,Xn|H0)

π(X1, . . . ,Xn|H1)
.
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Under H0, the prior distribution of the common θ given k is set to be Dirichlet distribution

with parameter vector (αk,1, . . . , αk,k). Similarly, under H1, the prior distribution of θs’s given

the ks’s are jointly independent, with marginal Dirichlet distribution with parameter vector

(αks,1, . . . , αks,ks), s = 1, . . . , n; The prior distribution of the ks’s are also jointly independent,

with ks being uniform between 1 and M . By the independence of Xs’s given k and θ,

π(X1, . . . ,Xn|H0) =
M∑

k=1

[ ∫
π(X1, . . . ,Xn|θ, k, H0)π(θ|k,H0)π(k|H0)dθ

]
=

∑
q6k6M

[ ∫ n∏
s=1

{
π(Xs|θ, k, H0)

}
π(θ|k,H0)dθ

]
π(k|H0).

Similarly,

π(X1, . . . ,Xn|H1)

=
M∑

k1=1

· · ·
M∑

kn=1

[ ∫
· · ·

∫
{

n∏
s=1

π(Xs|θs, ks, H1)π(θs|ks, H1)π(ks|H1)}dθ1 · · · dθs

]

=
∑

q16k16M

· · ·
∑

qn6kn6M

[ n∏
s=1

{ ∫
π(Xs|θs, ks, H1)π(θs|ks, H1)π(ks|H1)dθs

}]

=
n∏

s=1

[ ∑
qs6ks6M

{ ∫
π(Xs|θs, ks)π(θs|ks)dθs

}
π(ks|H1)

]
.

Note that in the first equality the region over which the θ’s are identical has zero contribution

to the integrals, and hence need not be removed from the integration. It follows from the

results derived in Appendices A and B that, for (X1, . . . ,Xn) = (x1, . . . ,xn), the Bayes

factor equals

B =
π(x1, . . . ,xn|H0)

π(x1, . . . ,xn|H1)

=
1

M

∑
q6k6M

[ n∏
s=1

{ (
∑q

i=1 xs,i)!

xs,1! · · ·xs,q!

}(
∑k

i=1 αk,i − 1)!∏k
i=1(αk,i − 1)!

∏k
i=1(

∑n
s=1 xs,i + αk,i − 1)!

(
∑n

s=1

∑q
i=1 xs,i +

∑k
i=1 αk,i − 1)!

]/
n∏

s=1

[ ∑
qs6ks6M

{ 1

M

(
∑qs

i=1 xs,i)!(
∑ks

i=1 αks,i − 1)!

(
∑qs

i=1 xs,i +
∑ks

i=1 αks,i − 1)!

qs∏
i=1

((xs,i + αks,i − 1)!

xs,i!(αks,i − 1)!

)}]
.

A large B serves as strong evidence for H0 against H1.

In the bartonella application, assuming a flat prior under H0 and H1. Then, the Bayes factor

equals
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B =

1
M

∑
q6k6M

[ ∏n
s=1

{
(
∑q

i=1
xs,i)!

xs,1!···xs,q !

}
(k−1)!

∏q

i=1
(
∑n

s=1
xs,i)!

(
∑n

s=1

∑q

i=1
xs,i+k−1)!

]
∏n

s=1

[ ∑
qs6ks6M

{
1
M

(
∑qs

i=1
xs,i)!(ks−1)!

(
∑qs

i=1
xs,i+ks−1)!

}] .

Case 2: Incomplete Data

The definition of q is the same as that of Case 1. For simplicity, assume all sites have the

same disjoint sets of missingness, i.e., (As,1, . . . , As,m) = (A1, . . . , Am), s = 1, . . . ,m. Let

xs,A0 be 0, s = 1, . . . , n, as assumed earlier. Thanks to the results in Appendices A and B,

π(x1, . . . ,xn|H0)

=
∑

q6k6M

[ ∫ n∏
s=1

{
π(Xs|θ, k, H0)

}
π(θ|k,H0)dθ

]
π(k|H0)

=
1

M

∑
q6k6M

[ n∏
s=1

{ (
∑q

i=1 xs,i +
∑m

i=1 xs,Ai
)!

xs,1! · · ·xs,q!xs,A1 ! · · ·xs,Am !

}Γ(
∑k

i=1 αk,i)∏k
i=1 Γ(αk,i)

m∏
i=0

{ ∏
j∈Ai

Γ(αk,j +
∑n

s=1 xs,j)

Γ(
∑

j∈Ai
(αk,j +

∑n
s=1 xs,j))

}

×
∏m

i=0 Γ(
∑

j∈Ai
(αk,j +

∑n
s=1 xs,j) +

∑n
s=1 xs,Ai

)

Γ(
∑m

i=0{
∑

j∈Ai
(αk,j +

∑n
s=1 xs,j) +

∑n
s=1 xs,Ai

})
]
,

and

π(x1, . . . ,xn|H1)

=
n∏

s=1

[ ∑
qs6ks6M

{ ∫
π(xs|θs, ks)π(θs|ks)π(ks)dθs

}]

=
n∏

s=1

[ ∑
qs6ks6M

{ 1

M

(
∑qs

i=1 xs,i +
∑m

i=1 xs,Ai
)!

xs,1! · · ·xs,qs !xs,A1 ! · · ·xs,Am !

Γ(
∑ks

i=1 αks,i)∏ks
i=1 Γ(αks,i)

m∏
i=0

{ ∏
j∈Ai

Γ(αks,j + xs,j)

Γ(
∑

j∈Ai
(αks,j + xs,j))

}

×
∏m

i=0 Γ(
∑

j∈Ai
(αks,j + xs,j) + xs,Ai

)

Γ(
∑m

i=0{
∑

j∈Ai
(αks,j + xs,j) + xs,Ai

})
}]

.

For the case that m = 1, the Bayes factor can be readily computed upon noting that

π(x1, . . . ,xn|H0)

=
1

M

∑
q6k6M

[ n∏
s=1

{(
∑q

i=1 xs,i + xs,A1)!

xs,1! · · ·xs,q!xs,A1 !

} (k − 1)!
∏q

i=1(
∑n

s=1 xs,i)!

(
∑q

i=2

∑n
s=1 xs,i + k − 2)!

×(
∑q

i=2

∑n
s=1 xs,i +

∑n
i=1 xs,A1 + k − 2)!

(
∑q

i=1

∑n
s=1 xs,i +

∑n
i=1 xs,A1 + k − 1)!

]
,

π(x1, . . . ,xn|H1)

=
n∏

s=1

[ ∑
qs6ks6M

{ 1

M

(ks − 1)!(
∑q

i=1 xs,i + xs,A1)!

(
∑q

i=1 xs,i + xs,A1 + ks − 1)!

(
∑q

i=2 xs,i + xs,A1 + ks − 2)!

xs,A1 !(
∑q

i=2 xs,i + ks − 2)!

}]
.
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Figure 1. Spatio–temporal distribution of the median posterior Shannon entropy for
M = 13. Each circle is drawn with center at the (latitude, logitude) of the site and area
proportional to the median posterior Shannon entropy.
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Figure 2. Histogram of Bootstrap for M = 13
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Table 1
Posterior Means of Shannon Entropy

M = 10 M = 11 M = 12 M = 13 M = 14

2003 0.470 0.472 0.475 0.476 0.474

2004 0.581 0.583 0.583 0.583 0.583

2005 1.662 1.663 1.662 1.663 1.662

2006 1.293 1.297 1.299 1.300 1.303
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Table 2
Posterior 95% intervals of annual Shannon entropy for M = 13

Posterior Mean Posterior 95% Prediction Interval

2003 0.476 (0.372 0.619)

2004 0.583 (0.498 0.679)

2005 1.663 (1.573 1.755)

2006 1.300 (1.120 1.552)


